this is my code:
#define likelihood function (including an intercept/constant in the function.) lltobit <- function(b,x,y) { sigma <- b[3] y <- as.matrix(y) x <- as.matrix(x) vecones <- rep(1,nrow(x)) x <- cbind(vecones,x) bx <- x %*% b[1:2] d <- y != 0 llik <- sum(d * ((-1/2)*(log(2*pi) + log(sigma^2) + ((y - bx)/sigma)^2)) + (1-d) * (log(1 - pnorm(bx/sigma)))) return(-llik) } n <- nrow(censored) #define number of variables y <- censored$y #define y and x for easier use x1 <- as.matrix(censored$x) x <- cbind(rep(1,n),x1) #include constant/intercept bols <- (solve(t(x) %*% x)) %*% (t(x) %*% y) #compute ols estimator (XX) -1 XY init <- rbind(as.matrix(bols[1:nrow(bols)]),1) #initial values init tobit1 <- optim(init, lltobit, x=x, y=y, hessian=TRUE, method="BFGS")
where censored is my data table, including 200 (censored) values of y and 200 values of x.
Everything works, but when running the optim command, i get the following error:
tobit1 <- optim(init, lltobit, x=x, y=y, hessian=TRUE, method="BFGS") Error in x %*% b[1:2] : non-conformable arguments
I know what it means, but since x is a 200 by 2 matrix, and b[1:2] a vector of 2 by 1, what goes wrong? I tried transposing both, and also the initial values vector, but nothing works. Can anyone help me?