What is the difference between np.mean and tf.reduce_mean?

The functionality of numpy.mean and tensorflow.reduce_mean are the same. They do the same thing. From the documentation, for numpy and tensorflow, you can see that. Lets look at an example,

c = np.array([[3.,4], [5.,6], [6.,7]])
print(np.mean(c,1))

Mean = tf.reduce_mean(c,1)
with tf.Session() as sess:
    result = sess.run(Mean)
    print(result)

Output

[ 3.5  5.5  6.5]
[ 3.5  5.5  6.5]

Here you can see that when axis(numpy) or reduction_indices(tensorflow) is 1, it computes mean across (3,4) and (5,6) and (6,7), so 1 defines across which axis the mean is computed. When it is 0, the mean is computed across(3,5,6) and (4,6,7), and so on. I hope you get the idea.

Now what are the differences between them?

You can compute the numpy operation anywhere on python. But in order to do a tensorflow operation, it must be done inside a tensorflow Session. You can read more about it here. So when you need to perform any computation for your tensorflow graph(or structure if you will), it must be done inside a tensorflow Session.

Lets look at another example.

npMean = np.mean(c)
print(npMean+1)

tfMean = tf.reduce_mean(c)
Add = tfMean + 1
with tf.Session() as sess:
    result = sess.run(Add)
    print(result)

We could increase mean by 1 in numpy as you would naturally, but in order to do it in tensorflow, you need to perform that in Session, without using Session you can’t do that. In other words, when you are computing tfMean = tf.reduce_mean(c), tensorflow doesn’t compute it then. It only computes that in a Session. But numpy computes that instantly, when you write np.mean().

I hope it makes sense.

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)