Here’s a couple of suggestions:
Use date_range
for the index:
import datetime import pandas as pd import numpy as np todays_date = datetime.datetime.now().date() index = pd.date_range(todays_date-datetime.timedelta(10), periods=10, freq='D') columns = ['A','B', 'C']
Note: we could create an empty DataFrame (with NaN
s) simply by writing:
df_ = pd.DataFrame(index=index, columns=columns) df_ = df_.fillna(0) # with 0s rather than NaNs
To do these type of calculations for the data, use a numpy array:
data = np.array([np.arange(10)]*3).T
Hence we can create the DataFrame:
In [10]: df = pd.DataFrame(data, index=index, columns=columns) In [11]: df Out[11]: A B C 2012-11-29 0 0 0 2012-11-30 1 1 1 2012-12-01 2 2 2 2012-12-02 3 3 3 2012-12-03 4 4 4 2012-12-04 5 5 5 2012-12-05 6 6 6 2012-12-06 7 7 7 2012-12-07 8 8 8 2012-12-08 9 9 9