dataset = read.csv('dataset/housing.header.binary.txt') dataset1 = dataset[6] #higest positive correlation dataset2 = dataset[13] #lowest negative correlation dependentVal= dataset[14] #dependent value new_dataset = cbind(dataset1,dataset2, dependentVal) # new matrix #split dataset #install.packages('caTools') library(caTools) set.seed(123) #this is needed to garantee that every run will produce the same output split = sample.split(new_dataset, SplitRatio = 0.75) train_set = subset(new_dataset, split == TRUE) test_set = subset(new_dataset, split == FALSE) #Fitting Decision Tree to training set install.packages('rpart') library(rpart) classifier = rpart(formula = Medv ~ Rm + Lstat, data = train_set) #predicting the test set results y_pred = predict(classifier, newdata = test_set[3], type ='class')
I want to predict column 3 of test_set
, but I keep getting
Error in eval(predvars, data, env) : object ‘Rm’ not found
Even though I specify test_set[3]
not test_set[1]
which contain Rm
The column names are as follows: Rm
, Lstat
, and Medv
.
test_set[3]
and test_set[2]
give the same following error:
Error in eval(predvars, data, env) : object Rm not found
and test_set[1]
gives:
Error in eval(predvars, data, env) : object ‘Lstat’ not found
I have tried the following:
names(test_set) <- c('Rm', 'Lstat','Medv')
: I renamed explicitly.is.data.frame(test_set)
: i checked if test_set is a dataframe.