Edited for Pandas 0.22+ considering the deprecation of the use of dictionaries in a group by aggregation.
We set up a very similar dictionary where we use the keys of the dictionary to specify our functions and the dictionary itself to rename the columns.
rnm_cols = dict(size='Size', sum='Sum', mean='Mean', std='Std') df.set_index(['Category', 'Item']).stack().groupby('Category') \ .agg(rnm_cols.keys()).rename(columns=rnm_cols) Size Sum Mean Std Category Books 3 58 19.333333 2.081666 Clothes 3 148 49.333333 4.041452 Technology 6 1800 300.000000 70.710678
option 1
use agg
← link to docs
agg_funcs = dict(Size='size', Sum='sum', Mean='mean', Std='std') df.set_index(['Category', 'Item']).stack().groupby(level=0).agg(agg_funcs) Std Sum Mean Size Category Books 2.081666 58 19.333333 3 Clothes 4.041452 148 49.333333 3 Technology 70.710678 1800 300.000000 6
option 2
more for less
use describe
← link to docs
df.set_index(['Category', 'Item']).stack().groupby(level=0).describe().unstack() count mean std min 25% 50% 75% max Category Books 3.0 19.333333 2.081666 17.0 18.5 20.0 20.5 21.0 Clothes 3.0 49.333333 4.041452 45.0 47.5 50.0 51.5 53.0 Technology 6.0 300.000000 70.710678 200.0 262.5 300.0 337.5 400.0