The problem arises due to the perfect correlation between the two series in your data. From the traceback, you can see, that internally a wald test is used to compute the maximum likelihood estimates for the parameters of the lag-time series. To do this an estimate of the parameters covariance matrix (which is then near-zero) and its inverse is needed (as you can also see in the line invcov = np.linalg.inv(cov_p)
in the traceback). This near-zero matrix is now singular for some maximum lag number (>=5) and thus the test crashes. If you add just a little noise to your data, the error disappears:
import numpy as np import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.stattools import grangercausalitytests n = 1000 ls = np.linspace(0, 2*np.pi, n) df1Clean = pd.DataFrame(np.sin(ls)) df2Clean = pd.DataFrame(2*np.sin(ls+1)) dfClean = pd.concat([df1Clean, df2Clean], axis=1) dfDirty = dfClean+0.00001*np.random.rand(n, 2) grangercausalitytests(dfClean, maxlag=20, verbose=False) # Raises LinAlgError grangercausalitytests(dfDirty, maxlag=20, verbose=False) # Runs fine