df.to_numpy() is better than df.values, here’s why.*
It’s time to deprecate your usage of values and as_matrix().
pandas v0.24.0 introduced two new methods for obtaining NumPy arrays from pandas objects:
to_numpy(), which is defined onIndex,Series, andDataFrameobjects, andarray, which is defined onIndexandSeriesobjects only.
If you visit the v0.24 docs for .values, you will see a big red warning that says:
Warning: We recommend using DataFrame.to_numpy() instead.
See this section of the v0.24.0 release notes, and this answer for more information.
* – to_numpy() is my recommended method for any production code that needs to run reliably for many versions into the future. However if you’re just making a scratchpad in jupyter or the terminal, using .values to save a few milliseconds of typing is a permissable exception. You can always add the fit n finish later.
Towards Better Consistency: to_numpy()
In the spirit of better consistency throughout the API, a new method to_numpy has been introduced to extract the underlying NumPy array from DataFrames.
# Setup
df = pd.DataFrame(data={'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]},
index=['a', 'b', 'c'])
# Convert the entire DataFrame
df.to_numpy()
# array([[1, 4, 7],
# [2, 5, 8],
# [3, 6, 9]])
# Convert specific columns
df[['A', 'C']].to_numpy()
# array([[1, 7],
# [2, 8],
# [3, 9]])
As mentioned above, this method is also defined on Index and Series objects (see here).
df.index.to_numpy() # array(['a', 'b', 'c'], dtype=object) df['A'].to_numpy() # array([1, 2, 3])
By default, a view is returned, so any modifications made will affect the original.
v = df.to_numpy() v[0, 0] = -1 df A B C a -1 4 7 b 2 5 8 c 3 6 9
If you need a copy instead, use to_numpy(copy=True).
pandas >= 1.0 update for ExtensionTypes
If you’re using pandas 1.x, chances are you’ll be dealing with extension types a lot more. You’ll have to be a little more careful that these extension types are correctly converted.
a = pd.array([1, 2, None], dtype="Int64") a <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64 # Wrong a.to_numpy() # array([1, 2, <NA>], dtype=object) # yuck, objects # Correct a.to_numpy(dtype='float', na_value=np.nan) # array([ 1., 2., nan]) # Also correct a.to_numpy(dtype='int', na_value=-1) # array([ 1, 2, -1])
This is called out in the docs.
If you need the dtypes in the result…
As shown in another answer, DataFrame.to_records is a good way to do this.
df.to_records()
# rec.array([('a', 1, 4, 7), ('b', 2, 5, 8), ('c', 3, 6, 9)],
# dtype=[('index', 'O'), ('A', '<i8'), ('B', '<i8'), ('C', '<i8')])
This cannot be done with to_numpy, unfortunately. However, as an alternative, you can use np.rec.fromrecords:
v = df.reset_index()
np.rec.fromrecords(v, names=v.columns.tolist())
# rec.array([('a', 1, 4, 7), ('b', 2, 5, 8), ('c', 3, 6, 9)],
# dtype=[('index', '<U1'), ('A', '<i8'), ('B', '<i8'), ('C', '<i8')])
Performance wise, it’s nearly the same (actually, using rec.fromrecords is a bit faster).
df2 = pd.concat([df] * 10000) %timeit df2.to_records() %%timeit v = df2.reset_index() np.rec.fromrecords(v, names=v.columns.tolist()) 12.9 ms ± 511 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 9.56 ms ± 291 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Rationale for Adding a New Method
to_numpy() (in addition to array) was added as a result of discussions under two GitHub issues GH19954 and GH23623.
Specifically, the docs mention the rationale:
[…] with
.valuesit was unclear whether the returned value would be the actual array, some transformation of it, or one of pandas custom arrays (likeCategorical). For example, withPeriodIndex,.valuesgenerates a newndarrayof period objects each time. […]
to_numpy aims to improve the consistency of the API, which is a major step in the right direction. .values will not be deprecated in the current version, but I expect this may happen at some point in the future, so I would urge users to migrate towards the newer API, as soon as you can.
Critique of Other Solutions
DataFrame.values has inconsistent behaviour, as already noted.
DataFrame.get_values() is simply a wrapper around DataFrame.values, so everything said above applies.
DataFrame.as_matrix() is deprecated now, do NOT use!