How do I determine the size of an object in Python?
The answer, “Just use sys.getsizeof
“, is not a complete answer.
That answer does work for builtin objects directly, but it does not account for what those objects may contain, specifically, what types, such as custom objects, tuples, lists, dicts, and sets contain. They can contain instances each other, as well as numbers, strings and other objects.
A More Complete Answer
Using 64-bit Python 3.6 from the Anaconda distribution, with sys.getsizeof
, I have determined the minimum size of the following objects, and note that sets and dicts preallocate space so empty ones don’t grow again until after a set amount (which may vary by implementation of the language):
Python 3:
Empty Bytes type scaling notes 28 int +4 bytes about every 30 powers of 2 37 bytes +1 byte per additional byte 49 str +1-4 per additional character (depending on max width) 48 tuple +8 per additional item 64 list +8 for each additional 224 set 5th increases to 736; 21nd, 2272; 85th, 8416; 341, 32992 240 dict 6th increases to 368; 22nd, 1184; 43rd, 2280; 86th, 4704; 171st, 9320 136 func def does not include default args and other attrs 1056 class def no slots 56 class inst has a __dict__ attr, same scaling as dict above 888 class def with slots 16 __slots__ seems to store in mutable tuple-like structure first slot grows to 48, and so on.
How do you interpret this? Well say you have a set with 10 items in it. If each item is 100 bytes each, how big is the whole data structure? The set is 736 itself because it has sized up one time to 736 bytes. Then you add the size of the items, so that’s 1736 bytes in total
Some caveats for function and class definitions:
Note each class definition has a proxy __dict__
(48 bytes) structure for class attrs. Each slot has a descriptor (like a property
) in the class definition.
Slotted instances start out with 48 bytes on their first element, and increase by 8 each additional. Only empty slotted objects have 16 bytes, and an instance with no data makes very little sense.
Also, each function definition has code objects, maybe docstrings, and other possible attributes, even a __dict__
.
Also note that we use sys.getsizeof()
because we care about the marginal space usage, which includes the garbage collection overhead for the object, from the docs:
getsizeof()
calls the object’s__sizeof__
method and adds an additional garbage collector overhead if the object is managed by the garbage collector.
Also note that resizing lists (e.g. repetitively appending to them) causes them to preallocate space, similarly to sets and dicts. From the listobj.c source code:
/* This over-allocates proportional to the list size, making room * for additional growth. The over-allocation is mild, but is * enough to give linear-time amortized behavior over a long * sequence of appends() in the presence of a poorly-performing * system realloc(). * The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ... * Note: new_allocated won't overflow because the largest possible value * is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t. */ new_allocated = (size_t)newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6);
Historical data
Python 2.7 analysis, confirmed with guppy.hpy
and sys.getsizeof
:
Bytes type empty + scaling notes 24 int NA 28 long NA 37 str + 1 byte per additional character 52 unicode + 4 bytes per additional character 56 tuple + 8 bytes per additional item 72 list + 32 for first, 8 for each additional 232 set sixth item increases to 744; 22nd, 2280; 86th, 8424 280 dict sixth item increases to 1048; 22nd, 3352; 86th, 12568 * 120 func def does not include default args and other attrs 64 class inst has a __dict__ attr, same scaling as dict above 16 __slots__ class with slots has no dict, seems to store in mutable tuple-like structure. 904 class def has a proxy __dict__ structure for class attrs 104 old class makes sense, less stuff, has real dict though.
Note that dictionaries (but not sets) got a more compact representation in Python 3.6
I think 8 bytes per additional item to reference makes a lot of sense on a 64 bit machine. Those 8 bytes point to the place in memory the contained item is at. The 4 bytes are fixed width for unicode in Python 2, if I recall correctly, but in Python 3, str becomes a unicode of width equal to the max width of the characters.
And for more on slots, see this answer.
A More Complete Function
We want a function that searches the elements in lists, tuples, sets, dicts, obj.__dict__
‘s, and obj.__slots__
, as well as other things we may not have yet thought of.
We want to rely on gc.get_referents
to do this search because it works at the C level (making it very fast). The downside is that get_referents can return redundant members, so we need to ensure we don’t double count.
Classes, modules, and functions are singletons – they exist one time in memory. We’re not so interested in their size, as there’s not much we can do about them – they’re a part of the program. So we’ll avoid counting them if they happen to be referenced.
We’re going to use a blacklist of types so we don’t include the entire program in our size count.
import sys from types import ModuleType, FunctionType from gc import get_referents # Custom objects know their class. # Function objects seem to know way too much, including modules. # Exclude modules as well. BLACKLIST = type, ModuleType, FunctionType def getsize(obj): """sum size of object & members.""" if isinstance(obj, BLACKLIST): raise TypeError('getsize() does not take argument of type: '+ str(type(obj))) seen_ids = set() size = 0 objects = [obj] while objects: need_referents = [] for obj in objects: if not isinstance(obj, BLACKLIST) and id(obj) not in seen_ids: seen_ids.add(id(obj)) size += sys.getsizeof(obj) need_referents.append(obj) objects = get_referents(*need_referents) return size
To contrast this with the following whitelisted function, most objects know how to traverse themselves for the purposes of garbage collection (which is approximately what we’re looking for when we want to know how expensive in memory certain objects are. This functionality is used by gc.get_referents
.) However, this measure is going to be much more expansive in scope than we intended if we are not careful.
For example, functions know quite a lot about the modules they are created in.
Another point of contrast is that strings that are keys in dictionaries are usually interned so they are not duplicated. Checking for id(key)
will also allow us to avoid counting duplicates, which we do in the next section. The blacklist solution skips counting keys that are strings altogether.
Whitelisted Types, Recursive visitor
To cover most of these types myself, instead of relying on the gc
module, I wrote this recursive function to try to estimate the size of most Python objects, including most builtins, types in the collections module, and custom types (slotted and otherwise).
This sort of function gives much more fine-grained control over the types we’re going to count for memory usage, but has the danger of leaving important types out:
import sys from numbers import Number from collections import deque from collections.abc import Set, Mapping ZERO_DEPTH_BASES = (str, bytes, Number, range, bytearray) def getsize(obj_0): """Recursively iterate to sum size of object & members.""" _seen_ids = set() def inner(obj): obj_id = id(obj) if obj_id in _seen_ids: return 0 _seen_ids.add(obj_id) size = sys.getsizeof(obj) if isinstance(obj, ZERO_DEPTH_BASES): pass # bypass remaining control flow and return elif isinstance(obj, (tuple, list, Set, deque)): size += sum(inner(i) for i in obj) elif isinstance(obj, Mapping) or hasattr(obj, 'items'): size += sum(inner(k) + inner(v) for k, v in getattr(obj, 'items')()) # Check for custom object instances - may subclass above too if hasattr(obj, '__dict__'): size += inner(vars(obj)) if hasattr(obj, '__slots__'): # can have __slots__ with __dict__ size += sum(inner(getattr(obj, s)) for s in obj.__slots__ if hasattr(obj, s)) return size return inner(obj_0)
And I tested it rather casually (I should unittest it):
>>> getsize(['a', tuple('bcd'), Foo()]) 344 >>> getsize(Foo()) 16 >>> getsize(tuple('bcd')) 194 >>> getsize(['a', tuple('bcd'), Foo(), {'foo': 'bar', 'baz': 'bar'}]) 752 >>> getsize({'foo': 'bar', 'baz': 'bar'}) 400 >>> getsize({}) 280 >>> getsize({'foo':'bar'}) 360 >>> getsize('foo') 40 >>> class Bar(): ... def baz(): ... pass >>> getsize(Bar()) 352 >>> getsize(Bar().__dict__) 280 >>> sys.getsizeof(Bar()) 72 >>> getsize(Bar.__dict__) 872 >>> sys.getsizeof(Bar.__dict__) 280
This implementation breaks down on class definitions and function definitions because we don’t go after all of their attributes, but since they should only exist once in memory for the process, their size really doesn’t matter too much.