df.iloc[i]
returns the ith
row of df
. i
does not refer to the index label, i
is a 0-based index.
In contrast, the attribute index
returns actual index labels, not numeric row-indices:
df.index[df['BoolCol'] == True].tolist()
or equivalently,
df.index[df['BoolCol']].tolist()
You can see the difference quite clearly by playing with a DataFrame with a non-default index that does not equal to the row’s numerical position:
df = pd.DataFrame({'BoolCol': [True, False, False, True, True]}, index=[10,20,30,40,50]) In [53]: df Out[53]: BoolCol 10 True 20 False 30 False 40 True 50 True [5 rows x 1 columns] In [54]: df.index[df['BoolCol']].tolist() Out[54]: [10, 40, 50]
If you want to use the index,
In [56]: idx = df.index[df['BoolCol']] In [57]: idx Out[57]: Int64Index([10, 40, 50], dtype='int64')
then you can select the rows using loc
instead of iloc
:
In [58]: df.loc[idx] Out[58]: BoolCol 10 True 40 True 50 True [3 rows x 1 columns]
Note that loc
can also accept boolean arrays:
In [55]: df.loc[df['BoolCol']] Out[55]: BoolCol 10 True 40 True 50 True [3 rows x 1 columns]
If you have a boolean array, mask
, and need ordinal index values, you can compute them using np.flatnonzero
:
In [110]: np.flatnonzero(df['BoolCol']) Out[112]: array([0, 3, 4])
Use df.iloc
to select rows by ordinal index:
In [113]: df.iloc[np.flatnonzero(df['BoolCol'])] Out[113]: BoolCol 10 True 40 True 50 True