NaN loss when training regression network

Regression with neural networks is hard to get working because the output is unbounded, so you are especially prone to the exploding gradients problem (the likely cause of the nans).

Historically, one key solution to exploding gradients was to reduce the learning rate, but with the advent of per-parameter adaptive learning rate algorithms like Adam, you no longer need to set a learning rate to get good performance. There is very little reason to use SGD with momentum anymore unless you’re a neural network fiend and know how to tune the learning schedule.

Here are some things you could potentially try:

  1. Normalize your outputs by quantile normalizing or z scoring. To be rigorous, compute this transformation on the training data, not on the entire dataset. For example, with quantile normalization, if an example is in the 60th percentile of the training set, it gets a value of 0.6. (You can also shift the quantile normalized values down by 0.5 so that the 0th percentile is -0.5 and the 100th percentile is +0.5).
  2. Add regularization, either by increasing the dropout rate or adding L1 and L2 penalties to the weights. L1 regularization is analogous to feature selection, and since you said that reducing the number of features to 5 gives good performance, L1 may also.
  3. If these still don’t help, reduce the size of your network. This is not always the best idea since it can harm performance, but in your case you have a large number of first-layer neurons (1024) relative to input features (35) so it may help.
  4. Increase the batch size from 32 to 128. 128 is fairly standard and could potentially increase the stability of the optimization.

Leave a Comment